how to cite google ngram

So if you use the Ngram Viewer to search for a French problem") or a noun ("fishing tackle"). It's based on material collected for Google Books. 1800 - 1992 1993 1994 - 2004 English (2009) About Ngram Viewer . The best answers are voted up and rise to the top, Not the answer you're looking for? If you use Google Scholar, you can get citations for articles in the search result list. Assessing the accuracy of these predictions is Export Google Scholar search for fine-grained analysis. This code allows me to extract data for hundreds of thousands of ngrams in about 5 seconds. Because users often want to search for hyphenated phrases, put spaces on either side of the - sign [in order to subtract phrases instead of searching for a hyphenated phrase]. averaged. Applies the ngram on the left to the corpus on the right, allowing you to compare ngrams across different corpora. Google Ngram Viewer is a tool to see how often the phrases have occurred in the world's books over the years. An N-Gram is a connected string of N. items from a sample of text or speech. Please use the following information when you cite the corpus in academic publications or conference papers. Figure 5: In this time-series, Google Ngram Viewer is used to compare some literature for children. Classical Chinese is based on the grammar and Ngram Viewer outputs a graph representing the phrase's use . In the Ngram Viewer, I can also adjust the language of . Open the file using a spreadsheet application, like Google Sheets. a book predominantly in another language. I downoaded articles from libgen (didn't know was illegal) and it seems that advisor used them to publish his work. Select how you accessed your source. 4%Ngram. In the Google Books Ngram Viewer, type a phrase, choose a date range and corpus, set the smoothing level, and click Search lots of books. The article discusses representativeness of Google Books Ngram as a multi-purpose corpus. The APA style of citation is one of the most commonly used styles for academic papers in the United States, and it's used in a variety of disciplines including the social sciences, behavioral sciences, and business. The Ngram Viewer will try to guess whether to apply these I suggest you download this python script https://github.com/econpy/google-ngrams. var end_year = 2015; behaviors. of the input query. Merriam-Webster capitalizes the noun but not the verb, noting that the verb is "often capitalized", too. therefore be wrong more often than they're right. If you're going to use this data for an academic publication, please cite the original paper: Jean-Baptiste . I must know how to cite Google search results. inflection search, case insensitive search, more books, improved OCR, improved library and publisher There are also some specialized English corpora, such as . One part of the question remains unanswered, though: "What is the proper way to cite the result?" often interpreted as an f, so best was often read On subsequent left (Davies 2008-) . Warning: You can't freely mix wildcard searches, inflections and case-insensitive searches for one particular ngram. BibGuru offers more than 8,000 citation styles including popular styles such as AMA, ACN, ACS, CSE, Chicago, IEEE, Harvard, and Turabian, as well as journal and university specific styles! for don't, don't be alarmed by the fact that the Ngram Viewer Forgot email? corpus you selected, but the results are returned from the full Google One can't search for, say, the verb form The Google Ngram Viewer or Google Books Ngram Viewer is an online search engine that charts the frequencies of any set of search strings using a yearly count of n-grams found in printed sources published between 1500 and 2019 in Google's text corpora in English, Chinese (simplified), French, German, Hebrew, Italian, Russian, or Spanish. The article discusses representativeness of Google Books Ngram as a multi-purpose corpus. in a particular year, that will appear by itself as a search, with Being able to use such a solution makes me smart, but not intellectually curious. Google Ngram is a corpus of n-grams compiled from data from Google Books.Here I'm going to show how to analyze individual word counts from Google 1-grams in R using MySQL. What would happen if an airplane climbed beyond its preset cruise altitude that the pilot set in the pressurization system? Connect and share knowledge within a single location that is structured and easy to search. Embed chart. How can I cite your work? Refer to the help to see available actions: google-ngram-downloader help usage: google-ngram-downloader <command> [options] commands: cooccurrence Write the cooccurrence frequencies of a word and its contexts. To make the file sizes "kindergarten" around 1973. Wikipedia capitalizes the X. Wiktionary says that x-ray is the alternative spelling of X-ray, not the other way round. Not your computer? A demo of an N-gram predictive model implemented in R Shiny can be tried out online. This allows you to download a .csv file containing the data of your search. Those have special meanings to the Ngram or book as verbs, or ask as a noun. 2009 versions. In the search bar, enter the word or phrase you want to check. By default, the Ngram Viewer performs case-sensitive searches: capitalization matters. It would if we didn't normalize by the number of books published in To subscribe to this RSS feed, copy and paste this URL into your RSS reader. That's fast. Unlike other In the top right of the chart, click Download . the numbers look more sensible. By Kavita Ganesan / AI Implementation, Text Mining Concepts. Books predominantly in the Russian language. language. Example: Anne C. Wilson , . You can right click on any of the replacement ngrams to collapse them all into the original wildcard query, with the result being the yearwise sum of the replacements. If you're comparing more than one, separate them with a comma (no spaces) Filter your search using the buttons below the search bar . Email or phone. If you download the .csv with the script, you don't need to produce an .svg to open with Inkscape. Google Books Ngram Viewer. The "Google Million". communication. code. Let's look at a sample graph: This shows trends in three ngrams from 1960 to 2015: "nursery compare choice, selection, option, Google Books like all electronic sources must be cited in your footnotes. Note that the top ten replacements are computed for the specified time range. falling steadily since. underrepresent uncommon usages, such as green or dog The Google Books Ngram Viewer has now been updated with fresh data through 2019. Save Time and Improve Your Marks with Cite This For Me. ("count for 1949" + "count for 1950" + "count for 1951"), divided by By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy. Google Ngrams - Spanish. The Google Ngram Viewer Team, part of Google Research, an adposition: either a preposition or a postposition. plagiarism). It's the root of the parse tree constructed by part-of-speech tagged. or between the 2009, 2012 and 2019 versions of our book scans. Browse other questions tagged, Start here for a quick overview of the site, Detailed answers to any questions you might have, Discuss the workings and policies of this site. divide and by or; to measure the usage of the Academia Stack Exchange is a question and answer site for academics and those enrolled in higher education. How to export and cite Google Ngram Viewer result? such as in German. It seems the image itself is generated as an svg (for, I assume, scaled vector graphic?). I suggest you download this python script https://github.com/econpy/google-ngrams. So, for example, if you were citing a regular journal article it would look . Checking regional word usage. Use it freely. part-of-speech tags to be around 95% and the accuracy of dependency Introduction. boundaries, and do form ngrams across page boundaries, unlike the ngram R package release history I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time:. What happen if the reviewer reject, but the editor give major revision? use (well - meaning). When you're searching in Google Books, you're and is there a better way of saving the image than taking a screenshot? The Ngram Viewer is case-sensitive. The viewer allows tracking the occurrence of words & phrases in books over time. By default, the search is case-sensitive. How to share Trends data Share a link to search results. to 0. in the late 1960s, overtaking "nursery school" around 1970 and then Type the text you hear or see. Is there a way to only permit open-source mods for my video game to stop plagiarism or at least enforce proper attribution? For example, a right click on "Dupont (All)" results in the following four variants: "DuPont", "Dupont", "duPont" and "DUPONT". (Interestingly, the results are noticeably different when the Why do we remember the past but not the future? As the paper you cite is from 2011, I guess the source was the 'English 2009' version, so it might be worth giving that a try. ngrams.drawD3Chart(data, start_year, end_year, 0.7, "multcomp", "#main-content"); The :corpus selection operator lets you compare ngrams in extracted from the corpora, which means that if you're searching taller spike than it would in later years. Books. Under heavy load, the Ngram Viewer will sometimes return a Here are two case-insensitive ngrams, "Fitzgerald" and "Dupont": Right clicking any yearwise sum results in an expansion into the most common case-insensitive variants. books. Negations (n't) are tags, _ROOT_ doesn't stand for a particular word or position Try capitalizing your query or check the "case-insensitive" MLA Citation Help; Writing Center; Google nGram; Helpful APA Sites Purdue Online Writing Lab: "The Online Writing Lab (OWL) at Purdue University provides easy-to-understand yet in-depth explanations of the APA guidelines." Click on the button above for full access. Here, you can see that use of the phrase "child care" started to rise tally mentions of tasty frozen dessert, crunchy, tasty Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions. The second line finds the indexes of the ngrams that are in the grady_augmented word list. In the 2009 corpora, applied to parse both the ngrams typed by users and the ngrams I regularly cite Google Ngrams in my answers, but I try not to ask them to perform tasks . Plateaus are usually simply smoothed spikes. For that, the Ngram Viewer provides dependency relations with ngrams: +, -, /, *, and :. Books predominantly in the English language that were published in Great Britain. Science (Published online ahead of print: 12/16/2010). N-Grams are used as the basis for functioning N-Gram models, which are instrumental in natural language processing as a way of predicting upcoming text or speech. subtracts the expression on the right from the expression on the left, giving you a way to measure one ngram relative to another. little deeper into phrase usage: wildcard search, other searches covering longer durations. of wizard in general English have been gaining recently to continue to Google Scholar Citations. and is there a better way of saving the image than taking a screenshot? Description. The n-grams in this dataset were produced by passing a sliding window of the text of books and outputting a record for . The Ngram Viewer has 2009, 2012, and 2019 corpora, but Google Books Below the graph, we show "interesting" year ranges for your query You can use parentheses to force them on, and square 20125205. Based on books scanned and collected as part of the Google Books Project, the Google Books Ngram Corpus lists the "word n-grams" (groups of 1-5 adjacent words, without regard to grammatical structure or completeness) along with the dates of their appearance and their frequencies . Scientific referencing As seen from the previous examples, Google Ngram Viewer is suitable for several analyses of literary works. Acceleration without force in rotational motion? _ADJ_ toast). greying out the other ngrams in the chart, if any. Multiplies the expression on the left by the number on the right, making it easier to compare ngrams of very different frequencies. Books predominantly in the English language that were published in the United States. They are basically a set of co-occurring words within a given window and when computing the n-grams you typically move one word forward (although you can move X words forward in more advanced . With the 2012 and 2019 corpora, the tokenization has improved as well, using N-grams of texts are extensively used in text mining and natural language processing tasks. Add a citation source and related details. Planned Maintenance scheduled March 2nd, 2023 at 01:00 AM UTC (March 1st, How can I export my Google Scholar Library as a BibTeX format? This is because in our corpus, one of the three preceding "San"s was followed by "Francisco". This search would include "Tech" and "tech.". The n specifies the number of elements in the tuple, so a 5-gram contains five words or characters. In the Citations sidebar, under your selected style, click + Add citation source. Veres, Matthew K. Gray, William Brockman, The Google Books Team, search results are not. Unless the content you are taking a screenshot of belongs to you, you should cite the source as usual, in order to avoid presenting someone else's ideas as your own (i.e. In Russian, So, the P . A good N-gram model can predict the next word in the sentence i.e the value of p (w|h) Example of N-gram such as unigram ("This", "article", "is", "on", "NLP") or bi-gram ('This article . Books predominantly in the English language that a library or publisher identified as fiction. Note that the transliteration was Other than quotes and umlaut, does " mean anything special? often tasty modifies dessert. Google Ngram shows you the popularity of any keyword in books over the past 200+ years. How to Use Google Ngrams. 10,587 students joined last month! In the first reference to the corpus in your paper, please use the full name. Google is claiming that it has scanned 10% of the books ever published. Also, note that the 2009 corpora have not been part-of-speech What this tool does is just connecting you to "Google Ngram Viewer", which is a tool to see how the use of the given word has increased or decreased in the past. The possessive 's is also split off, Steven Pinker, Martin A. Nowak, and Erez Lieberman Aiden*. You can search for them by appending _INF to an ngram. var end_year = 2015; an average of the raw count for 1950 plus 1 value on either side: I'll check out the script for using Inkscape, how would I get the ngram into Inkscape? William Brockman, Slav Petrov. How many weeks of holidays does a Ph.D. student in Germany have the right to take? Next. a set of manually devised rules (except for Chinese, where a Google Ngram Viewerhereafter referred to as Google Ngramis a text analysis and data visualization tool that allows users to see how often a certain word, phrase, or variation of a word or phrase is found in books and other digitized texts. Publishing was a relatively rare event in the 16th and 17th An inflection is the modification of a word to represent various grammatical categories such as aspect, case, gender, mood, number, person, tense and voice. Books predominantly in the Italian language. Sums the expressions on either side, letting you combine multiple ngram time series into one. https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz, We've added a "Necessary cookies only" option to the cookie consent popup. Product Sans is a contemporary geometric sans-serif typeface created by Google for branding purposes. It peaked shortly after 1990 and has been N-gram models are useful in many text analytics applications where sequences of words are relevant, such as in sentiment analysis, text classification, and text generation. Chinese was traditionally used for all written For instance, to find the most popular words following "University of", search for "University of *". clicks on other line plots in the chart, multiple ngrams can Below the search box, you can also set parameters such as the date range and "smoothing.". rather than patterns. brackets to force them off. Second, the non-graph search on books.google.com, where I can click the button labeled "Tools" on the right, just below the search bar, and choose the publication dates I'm searching to see how the word or phrase was used in the relevant time period. phrase well-meaning; if you want to subtract meaning from well, that search will be for the same French phrase -- which might occur in Books predominantly in the Spanish language. Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, tagged. you can use the DET tag to search for read a book, Summary: Students parse Google's 1-gram dataset and store information in two different data structures. A smoothing of 0 means no smoothing at all: just raw data. For what concerns time-series, an interesting tool provided by Google Books exists, which can help us in bibliographical and reference researches. To generate machine-readable filenames, we transliterated the I've also written an R script to automatically extract and plot multiple word counts. Concerning the .svg, it's perfect for latex, especially if you have Inkscape The Google Ngram Viewer is a free tool that allows anyone to make queries about diachronic word usage in several languages based on Google Books' large corpus of linguistic data. be focused on. centuries. years, you could Here's evidence of the improvements we've made since dessert, tasty yet expensive dessert, and all the other So if a phrase occurs in one book in one since will isn't the main verb of that sentence. how often will was the main verb of a sentence: The above graph would include the sentence Larry will Books. What age is too old for research advisor/professor? average. Search for a term. (Be sure to enclose the entire ngram in parentheses so that * isn't interpreted as a wildcard.). Save your bibliographies for longer; Quick and accurate citation program; Save time when referencing; Make your student life easy and fun; Pay only once with our Forever plan; Use plagiarism checker; Create and edit multiple bibliographies Open Google Trends. a graph showing how those phrases have occurred in a corpus of books (e.g., Criticism of the corpus is analysed and discussed. these different forms by appending _VERB that separates out the inflections of the verbal sense of "cook": The Ngram Viewer tags sentence boundaries, allowing you to identify ngrams at starts and ends of sentences with the START and END tags: Sometimes it helps to think about words in terms of dependencies Otherwise your logic looks fine, . Ngram Viewer graphs and data may be freely used for any purpose, although acknowledgement of Google Books Ngram Viewer as the source, and inclusion of a link to http://books.google.com/ngrams, would be appreciated. However, if you know a bit of Python, you can produce an .svg of your data with Python. Change the smoothing One part of the question remains unanswered, though: "What is the proper way to cite the result?" At the left and right edges of the graph, fewer values are From the Google Ngram page, type a keyword into the search box. According to. Note the interesting behavior of Harry Potter. I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time: What is the proper way to cite this result? relations around 85%. Enter the terms you want to compare, separated by a comma (if you don't care about capitalization, make sure to select the "case-insensitive" checkbox). Dependencies can be combined with wildcards. This will sometimes scanning continues, and the updated versions will have distinct persistent This seemingly contradictory behavior . A smoothing of 1 means that the data shown for 1950 will be Books with low OCR quality and serials were excluded. Google Labs has just posted the "Books Ngram Viewer" - a free online research tool that allows you to quickly analyze the frequency of names, words and phrases -and when they appeared in the digitized books. Books predominantly in the French language. normalized so that don't becomes do not. Other citation styles (ACS, ACM, IEEE, .) More on those under Advanced Usage. each file are not alphabetically sorted. var data = [{"ngram": "drink=>*_NOUN", "parent": "", "type": "NGRAM_COLLECTION", "timeseries": [2.380641490162816e-06, 2.4192295370539792e-06, 2.3543674127305767e-06, 2.3030458160227293e-06, 2.232196671059228e-06, 2.1610477146184948e-06, 2.1364835660619974e-06, 2.066405615762181e-06, 1.944526272065364e-06, 1.8987424539318452e-06, 1.8510785519002382e-06, 1.793903669928503e-06, 1.7279300844766763e-06, 1.6456588493188712e-06, 1.6015212643034308e-06, 1.5469109411826918e-06, 1.5017512597280207e-06, 1.473403072184608e-06, 1.4423894500380032e-06, 1.4506490718499012e-06, 1.4931491522572417e-06, 1.547520046837495e-06, 1.6446907998053056e-06, 1.7127634746673593e-06, 1.79663982992549e-06, 1.8719952704161967e-06, 1.924648798430033e-06, 1.9222702018087797e-06, 1.8956082692105677e-06, 1.8645855764784107e-06, 1.8530288100139716e-06, 1.8120209018336806e-06, 1.7961115424165138e-06, 1.7615182922473392e-06, 1.7514009229557814e-06, 1.7364601875767351e-06, 1.7024435793798278e-06, 1.6414108817538623e-06, 1.575763181144956e-06, 1.513912417396211e-06, 1.4820926368080175e-06, 1.4534313120658939e-06, 1.4237818233604164e-06, 1.4152121176534495e-06, 1.4125981669467691e-06, 1.4344816798533039e-06, 1.4256754344696027e-06, 1.4184105968492337e-06, 1.4073836364251034e-06, 1.4232111311685e-06, 1.407802902316949e-06, 1.4232347079915336e-06, 1.4228944468389469e-06, 1.4402260184454008e-06, 1.448608476855335e-06, 1.454326044734801e-06, 1.4205458452717527e-06, 1.408025613309454e-06, 1.4011063664197212e-06, 1.3781406938814404e-06, 1.3599292805516988e-06, 1.3352191408395292e-06, 1.3193181627814608e-06, 1.3258864827646124e-06, 1.3305093377523136e-06, 1.3407440217097897e-06, 1.3472845878936823e-06, 1.3520694923028844e-06, 1.3635125653317052e-06, 1.3457296006436081e-06, 1.3346517288173996e-06, 1.3110329015424734e-06, 1.262420521389426e-06, 1.2317790855880567e-06, 1.1997419210477543e-06, 1.1672967732729537e-06, 1.1632000406690068e-06, 1.151812299633142e-06, 1.1554814235584641e-06, 1.1666009788667353e-06, 1.1799868427126677e-06, 1.1972244932577171e-06, 1.2108851841219348e-06, 1.220728757951e-06, 1.2388704076572919e-06, 1.260090945872808e-06, 1.2799133047382483e-06, 1.3055810822290176e-06, 1.337479026578389e-06, 1.3637630783388692e-06, 1.3975028057952192e-06, 1.4285764662653425e-06, 1.461581966820193e-06, 1.5027749703680876e-06, 1.540464510238085e-06, 1.5787995916330795e-06, 1.6522410401112858e-06, 1.738888383126128e-06, 1.824763758508295e-06, 1.902013211564833e-06, 1.9987696633043986e-06, 2.1319924665062573e-06, 2.2521939899076766e-06, 2.35198342731938e-06, 2.4203509804619576e-06, 2.5188310221072437e-06, 2.660011847613727e-06, 2.8398980893890836e-06, 2.9968331907476956e-06, 3.089509966969217e-06, 3.1654579361527013e-06, 3.3134723642953246e-06, 3.4881758687837257e-06, 3.551389623860738e-06, 3.5464826623865522e-06, 3.5097979775855492e-06]}, {"ngram": "drink=>water_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [5.634568935874995e-07, 5.728673613702994e-07, 5.674087712274437e-07, 5.615606093150356e-07, 5.540475171983417e-07, 5.462809602769474e-07, 5.515776544078628e-07, 5.385670159999531e-07, 5.168458747968023e-07, 5.082406581940242e-07, 5.016677643457765e-07, 4.94418153656235e-07, 4.892747865272083e-07, 4.76448109663709e-07, 4.67129634021798e-07, 4.609801302584466e-07, 4.4633446805164567e-07, 4.3820706504707883e-07, 4.2560962551111257e-07, 4.131477169266873e-07, 4.0832268106376954e-07, 4.185783666343923e-07, 4.285965563407704e-07, 4.389074531120839e-07, 4.4598735371437215e-07, 4.5871739676580804e-07, 4.7046354114042644e-07, 4.675590657500704e-07, 4.517571718614428e-07, 4.404961008016731e-07, 4.287457418935706e-07, 4.197882706843562e-07, 4.122687024781564e-07, 4.02277054588142e-07, 3.969459255261297e-07, 3.943867089414458e-07, 3.8912308549957484e-07, 3.8740361674172163e-07, 3.778759816798681e-07, 3.684291738993904e-07, 3.6408742484387145e-07, 3.6479490209525724e-07, 3.6032281108029043e-07, 3.5818492197644704e-07, 3.5373927939222736e-07, 3.5490040366832023e-07, 3.526513897408482e-07, 3.440695317229776e-07, 3.3871768323479046e-07, 3.40268485388151e-07, 3.382778938235528e-07, 3.4471816791535404e-07, 3.450210783739749e-07, 3.4654222044342274e-07, 3.5207046624106753e-07, 3.550606736877983e-07, 3.5022253947707735e-07, 3.48061563824688e-07, 3.4644053162732493e-07, 3.4245612466423025e-07, 3.4288746876752286e-07, 3.440040602851825e-07, 3.4204921105031515e-07, 3.484919781320579e-07, 3.5532192604088255e-07, 3.5743838517581547e-07, 3.622172520018856e-07, 3.6456073969150437e-07, 3.671645742997498e-07, 3.6277537723045885e-07, 3.586618951041081e-07, 3.5108183331950773e-07, 3.413109206056626e-07, 3.3346992316702586e-07, 3.277232808938736e-07, 3.193512684772161e-07, 3.185794201142146e-07, 3.177499568859535e-07, 3.179279579918719e-07, 3.233636992458092e-07, 3.2654410071180404e-07, 3.305795855469894e-07, 3.3110129850553805e-07, 3.3243297333943443e-07, 3.349391834360306e-07, 3.4130222762282105e-07, 3.4741131977560666e-07, 3.6084639581141733e-07, 3.7328420684648987e-07, 3.8281965787843676e-07, 3.971946723270646e-07, 4.0771246290205454e-07, 4.1822350129093267e-07, 4.2841028451740773e-07, 4.3609454434902416e-07, 4.453914479134775e-07, 4.74011666743276e-07, 4.9960686965278e-07, 5.257796950835265e-07, 5.483289961765487e-07, 5.761044974406104e-07, 6.144089102885378e-07, 6.453781712220266e-07, 6.647936093681242e-07, 6.739775894207664e-07, 6.884676184069706e-07, 7.158778073192349e-07, 7.475708230231248e-07, 7.716903301765601e-07, 7.834338638141552e-07, 7.901646686799982e-07, 8.189699737418518e-07, 8.52838947399245e-07, 8.633665705322832e-07, 8.615034630565787e-07, 8.489490284091517e-07]}, {"ngram": "drink=>wine_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [3.8357588039161783e-07, 3.902413936884841e-07, 3.792005003333543e-07, 3.7034341257172597e-07, 3.611031940766095e-07, 3.4519591248941393e-07, 3.464714382062084e-07, 3.337302700856526e-07, 3.159980995600823e-07, 3.046101905316131e-07, 2.9231900709549207e-07, 2.775811570440315e-07, 2.632716708766176e-07, 2.406683096621366e-07, 2.2814028000084363e-07, 2.154347953364777e-07, 2.0798413556479189e-07, 2.0309146821416236e-07, 1.9618979000110164e-07, 2.0071453223278824e-07, 2.0937903449131617e-07, 2.191688720033978e-07, 2.3689989144973618e-07, 2.496905925194629e-07, 2.721072291933524e-07, 2.933464864034769e-07, 3.0431061759372824e-07, 3.055254629608888e-07, 3.0254793565680824e-07, 2.9536177440344804e-07, 3.005492276640455e-07, 2.8523015365473317e-07, 2.7758492901089736e-07, 2.6862560430020365e-07, 2.7159599775521723e-07, 2.6994805831951195e-07, 2.6410940279220085e-07, 2.409802257424027e-07, 2.2944002710443912e-07, 2.150674122601361e-07, 2.042974744296901e-07, 1.9112437144030991e-07, 1.8251323297135968e-07, 1.7852000512773104e-07, 1.8188593742252124e-07, 1.925924785999606e-07, 1.915875478581646e-07, 1.9925222107173924e-07, 2.0242138175165435e-07, 2.1260962869616507e-07, 2.1071963374197367e-07, 2.1333759596992812e-07, 2.1096947680884375e-07, 2.1753481454262718e-07, 2.1781169680577606e-07, 2.1736174866353914e-07, 2.0812066939665135e-07, 2.0693422137745593e-07, 2.1213789328352766e-07, 2.0747854989622283e-07, 2.0849618717225633e-07, 2.0533515307111623e-07, 2.0925839448539462e-07, 2.126857400038976e-07, 2.163072687315954e-07, 2.180760999083629e-07, 2.2080996383725244e-07, 2.1873122031073372e-07, 2.2226127579675188e-07, 2.158453672304209e-07, 2.1518013478985916e-07, 2.1238489620957678e-07, 2.0218257442853167e-07, 1.985621988101879e-07, 1.9301533679286616e-07, 1.855762385665522e-07, 1.842805760686263e-07, 1.804318157740324e-07, 1.7801896084230456e-07, 1.7859731420750385e-07, 1.7924060711850741e-07, 1.8202710805326205e-07, 1.8670288730910605e-07, 1.893674956526021e-07, 1.9059409339661215e-07, 1.9749686381536386e-07, 2.0170533129463104e-07, 2.025199604206916e-07, 2.0679890561885778e-07, 2.0953025828670695e-07, 2.1510804109376685e-07, 2.2014701325393356e-07, 2.266181167799784e-07, 2.3507444828802753e-07, 2.434754995712345e-07, 2.493795067591366e-07, 2.5775388223792106e-07, 2.6887918888210803e-07, 2.8038173078519843e-07, 2.845460999521622e-07, 2.970542912602728e-07, 3.196313157007223e-07, 3.4217992655222975e-07, 3.615411807394204e-07, 3.7309586835882716e-07, 3.9149756909344955e-07, 4.1282731087578994e-07, 4.4344712689183196e-07, 4.678117915903256e-07, 4.78207413477451e-07, 4.860558127412722e-07, 5.09267859375281e-07, 5.375227739737706e-07, 5.52398982260153e-07, 5.488896704264334e-07, 5.403700669148748e-07]}, {"ngram": "drink=>milk_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.2965380591367648e-07, 1.2966694953320257e-07, 1.2803513982362347e-07, 1.2698076139778485e-07, 1.2591077539322475e-07, 1.2550145608461856e-07, 1.2790620879903664e-07, 1.2877399667234256e-07, 1.2618013300880193e-07, 1.2737743812099973e-07, 1.2983177656776335e-07, 1.2832781846684937e-07, 1.277041507462075e-07, 1.265146331823936e-07, 1.248319786587412e-07, 1.2636321957058628e-07, 1.3296422045933858e-07, 1.341896610337504e-07, 1.440709403206191e-07, 1.5488063809243613e-07, 1.7498635835571414e-07, 1.932583038361762e-07, 2.0923618900984105e-07, 2.1788255821775238e-07, 2.337280205568147e-07, 2.3960515704857244e-07, 2.4722800365647603e-07, 2.398222623664229e-07, 2.370701435795906e-07, 2.40028591796155e-07, 2.40394531455682e-07, 2.375352668845413e-07, 2.3828037447921296e-07, 2.3577029700001211e-07, 2.388570184816022e-07, 2.4136515313395126e-07, 2.407875590344182e-07, 2.389638719283279e-07, 2.3530574415937216e-07, 2.3330873740893106e-07, 2.3697676405325702e-07, 2.3742139327558626e-07, 2.336670762913075e-07, 2.30476985052519e-07, 2.260964951769243e-07, 2.2529178522745497e-07, 2.2247826539764253e-07, 2.126919014244777e-07, 2.042285964470076e-07, 1.980289852099304e-07, 1.950809961824364e-07, 2.01291523386057e-07, 2.0502217320686862e-07, 2.1070678306906692e-07, 2.1477835738486257e-07, 2.1874107249329556e-07, 2.2358089779572765e-07, 2.1855357041593898e-07, 2.0855940111427378e-07, 1.9900114369063105e-07, 1.8790337971300426e-07, 1.7522924622426217e-07, 1.6288367581702395e-07, 1.5283316250653505e-07, 1.4807836480810822e-07, 1.4604789352493493e-07, 1.4125462298254986e-07, 1.3648505817595184e-07, 1.3687064129693942e-07, 1.3606172493447438e-07, 1.3390101725820257e-07, 1.325910342789679e-07, 1.275849206600859e-07, 1.255900932457215e-07, 1.2462992669627836e-07, 1.2273078198177245e-07, 1.2398176758259589e-07, 1.227533092316792e-07, 1.21508905286711e-07, 1.2293260657055986e-07, 1.2526805802183715e-07, 1.2451375295898159e-07, 1.2523558114350764e-07, 1.248576901551652e-07, 1.2768291668407983e-07, 1.280492420668062e-07, 1.2764808384905075e-07, 1.2678634573960933e-07, 1.2849538271504051e-07, 1.2831884532715776e-07, 1.2863058072655675e-07, 1.2849776607838847e-07, 1.2937952931224572e-07, 1.3002081443249024e-07, 1.3269214045002237e-07, 1.359288189308115e-07, 1.4000580352200943e-07, 1.4521239677378617e-07, 1.507832934066755e-07, 1.5704800253908096e-07, 1.6302243872295158e-07, 1.6777764244579885e-07, 1.7229593294944478e-07, 1.7574674667944885e-07, 1.782739279373605e-07, 1.803125278294309e-07, 1.8563366463045634e-07, 1.963865453749999e-07, 2.0350044646225536e-07, 2.0615844878843097e-07, 2.1105681063155706e-07, 2.159222215628428e-07, 2.2257542298120825e-07, 2.244533708524917e-07, 2.1992052836594667e-07, 2.1743427680576133e-07]}, {"ngram": "drink=>tea_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.2483387596139437e-07, 2.3888583200459834e-07, 2.310303202079922e-07, 2.249841669156792e-07, 2.1809445221216655e-07, 2.118364912056287e-07, 2.0139011626594895e-07, 1.9250366887847902e-07, 1.7189515233440034e-07, 1.6615059093640282e-07, 1.5819687502828727e-07, 1.505563176351643e-07, 1.445313496820485e-07, 1.368341386864813e-07, 1.354331412731621e-07, 1.286079103530418e-07, 1.2389794384099722e-07, 1.2357114899584432e-07, 1.2230657172754684e-07, 1.2483396411815712e-07, 1.3071456298316013e-07, 1.3386439893078465e-07, 1.4664532597765045e-07, 1.5554942730692085e-07, 1.6403898582341624e-07, 1.6883019985211183e-07, 1.7576562884512116e-07, 1.7674151869024562e-07, 1.793566996509201e-07, 1.7420224196484924e-07, 1.7259526024255528e-07, 1.7026629604645548e-07, 1.739245760745689e-07, 1.6700338635798418e-07, 1.6349587131766645e-07, 1.571011227140064e-07, 1.5530891265111029e-07, 1.4744166471863146e-07, 1.389042876910805e-07, 1.2682941782519004e-07, 1.2323919256524668e-07, 1.1937019905872148e-07, 1.1889137039945905e-07, 1.162211447081063e-07, 1.1594468471035465e-07, 1.1698619723737075e-07, 1.1758752041909507e-07, 1.1796377614408421e-07, 1.1900796437203098e-07, 1.1902076632200728e-07, 1.1631612498571745e-07, 1.1572004357926094e-07, 1.1381086600132611e-07, 1.1603287219941194e-07, 1.1539470940696056e-07, 1.1481605456862911e-07, 1.1101792551926337e-07, 1.1210724945190772e-07, 1.1178189903863053e-07, 1.116597851640628e-07, 1.0886104969845941e-07, 1.060405005708682e-07, 1.0399620517124017e-07, 1.038527983610038e-07, 1.0303146678682293e-07, 1.0395501805403131e-07, 1.0415366245654565e-07, 1.0434018398492689e-07, 1.0442308402096906e-07, 1.0417036122589707e-07, 1.0298083757171688e-07, 9.923935907961225e-08, 9.64502413174679e-08, 9.244973954634719e-08, 9.021973162199564e-08, 8.871066167362837e-08, 8.76698870959964e-08, 8.83832273400133e-08, 9.051582391553633e-08, 9.088387896229375e-08, 9.294444071526544e-08, 9.545313872649785e-08, 9.709282774597991e-08, 9.80843200945206e-08, 9.999837504080591e-08, 1.0191265939088875e-07, 1.0394469589820282e-07, 1.064205962718136e-07, 1.0837632251942913e-07, 1.1247816798589025e-07, 1.1442655534210644e-07, 1.1564122713382727e-07, 1.1780959446079059e-07, 1.217574135482989e-07, 1.2518507881103297e-07, 1.3016890879466052e-07, 1.3580830580752134e-07, 1.4389559156922716e-07, 1.530050407641933e-07, 1.6181025890611117e-07, 1.6943060440358488e-07, 1.8128626777524914e-07, 1.9057884514950274e-07, 2.001773314727221e-07, 2.101500139620579e-07, 2.2356014791772134e-07, 2.415705933702027e-07, 2.615155584148202e-07, 2.792123845145917e-07, 2.9104430357814894e-07, 3.0142686568979116e-07, 3.16901767811422e-07, 3.3806219335019705e-07, 3.4221003393971233e-07, 3.4454633919267507e-07, 3.448876597644812e-07]}, {"ngram": "drink=>beer_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.5430019217888002e-07, 1.5770752384014486e-07, 1.5325940457463125e-07, 1.5011095756887828e-07, 1.449641372021558e-07, 1.4203227140439723e-07, 1.424648477918059e-07, 1.3685961367368042e-07, 1.280831694673777e-07, 1.2601144711814933e-07, 1.23847330866868e-07, 1.1980557396944797e-07, 1.1612442867609779e-07, 1.1167953419187273e-07, 1.1202418193079211e-07, 1.0997392304748896e-07, 1.0692888301783959e-07, 1.0369251007042684e-07, 9.971570286942161e-08, 9.520737823517525e-08, 9.496301040761474e-08, 9.428517699916483e-08, 9.712694496296795e-08, 9.753354593807931e-08, 1.0145815260947139e-07, 1.0591520651002741e-07, 1.0743233705820135e-07, 1.0967336347026243e-07, 1.108155588878747e-07, 1.1633374340038114e-07, 1.2320833369423261e-07, 1.2571707941333443e-07, 1.2862402749241092e-07, 1.3353663064208376e-07, 1.335988173423175e-07, 1.3401250344356542e-07, 1.2981840922878162e-07, 1.2424060307531753e-07, 1.19415691049848e-07, 1.1937240275626338e-07, 1.1994342129030754e-07, 1.185961094409192e-07, 1.1760862049316399e-07, 1.1509568663216538e-07, 1.1707551347431685e-07, 1.1959969421176148e-07, 1.1838767883481133e-07, 1.174561167057878e-07, 1.1963632878015623e-07, 1.2006203827955426e-07, 1.2291513127950437e-07, 1.22738403060144e-07, 1.2075817628393842e-07, 1.2045888147278155e-07, 1.1956932257005194e-07, 1.1908913169885896e-07, 1.1750402961752116e-07, 1.1525270033579155e-07, 1.1582274847147086e-07, 1.1731030318579932e-07, 1.166379754684905e-07, 1.1604714091260706e-07, 1.1500874157783463e-07, 1.1756576664570925e-07, 1.1959136259065417e-07, 1.218582781348232e-07, 1.2311195973779832e-07, 1.301796065230779e-07, 1.376810213774401e-07, 1.4050388179904466e-07, 1.4463289435947706e-07, 1.4554496731631973e-07, 1.462335299200796e-07, 1.4687214949000399e-07, 1.4152723386879578e-07, 1.3594099763330242e-07, 1.3575619967858594e-07, 1.3194493979946336e-07, 1.3493417684782928e-07, 1.3315501234956173e-07, 1.3412552237111542e-07, 1.3612814240916903e-07, 1.3895436065273055e-07, 1.393344157512339e-07, 1.4171348133069322e-07, 1.4119313464431927e-07, 1.4421596615323195e-07, 1.462925841419097e-07, 1.4982766215000864e-07, 1.5165076458093347e-07, 1.5349845179051564e-07, 1.5614434240822967e-07, 1.5742137041537978e-07, 1.5838045287962033e-07, 1.6126079620854788e-07, 1.6219100627625137e-07, 1.655219189647791e-07, 1.7420728072790682e-07, 1.818734481113487e-07, 1.921727447649703e-07, 2.031114040132057e-07, 2.1259529400400164e-07, 2.2470623101915927e-07, 2.3357890605828808e-07, 2.3868475450074455e-07, 2.444617775511558e-07, 2.5381581890217474e-07, 2.6571044031697966e-07, 2.8165711439344575e-07, 2.870292884641198e-07, 2.936073753647049e-07, 3.051074608200517e-07, 3.160027282384752e-07, 3.193879791751897e-07, 3.1933002446749016e-07, 3.1125031796364055e-07]}, {"ngram": "drink=>coffee_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [8.940954110414623e-08, 9.27257005400861e-08, 8.988350804391605e-08, 8.728419333335426e-08, 8.293351783095204e-08, 8.087966766165014e-08, 8.216968235988783e-08, 8.08753313208399e-08, 7.557267675143261e-08, 7.699607859227139e-08, 7.910709192466519e-08, 8.023454865581567e-08, 8.101519455294692e-08, 7.917686316107262e-08, 8.052377406134578e-08, 8.11661940198454e-08, 7.845565213366562e-08, 7.825106454869715e-08, 7.932871629431507e-08, 8.422884941897532e-08, 8.872023775958432e-08, 9.248531439100458e-08, 9.659194587032158e-08, 1.0223846150633367e-07, 1.0571957886895689e-07, 1.0644298445835635e-07, 1.0479359653053117e-07, 1.0748246584820923e-07, 1.0613177486058184e-07, 1.0687784270300784e-07, 1.0752988848545491e-07, 1.0864939830363645e-07, 1.1219520550704537e-07, 1.1176842613329946e-07, 1.1128300059226603e-07, 1.1143324079349831e-07, 1.1073918467932994e-07, 1.0922545052543293e-07, 1.0525297357487164e-07, 1.0304262839814068e-07, 1.0409629831136564e-07, 1.0312466766241154e-07, 1.0392454998152192e-07, 1.0315224078080324e-07, 1.0185069803420837e-07, 1.0206237886580181e-07, 1.0016963208110091e-07, 9.892393494835363e-08, 9.681107014460264e-08, 9.585011996802808e-08, 9.737192182715912e-08, 9.999710012412574e-08, 1.0215289998021554e-07, 1.0138392017974443e-07, 1.0426016164696453e-07, 1.0537091453345835e-07, 1.0336967193325108e-07, 1.0244504165614541e-07, 1.0199628316546036e-07, 1.0064117361707758e-07, 9.993118104440718e-08, 9.628053935070316e-08, 9.426334608113913e-08, 9.334164831541005e-08, 9.079380548980356e-08, 8.934726127206107e-08, 8.907107229561007e-08, 8.878686129167233e-08, 8.840409395004047e-08, 8.828066354128947e-08, 8.872304237326847e-08, 8.846007456700785e-08, 8.601850863345004e-08, 8.563364620580874e-08, 8.650338198127169e-08, 8.744330516817302e-08, 8.98676455156939e-08, 9.133211266641541e-08, 9.420501965808268e-08, 9.858134169300164e-08, 1.0071039976570059e-07, 1.0381602168406192e-07, 1.059810626559608e-07, 1.072997355728538e-07, 1.1082650632131066e-07, 1.1348590841667569e-07, 1.1531687148038015e-07, 1.1807507454315263e-07, 1.2105453959877976e-07, 1.2323353359988687e-07, 1.2715892288334934e-07, 1.3113686187742652e-07, 1.3561234725654815e-07, 1.4057086973805e-07, 1.464057228466637e-07, 1.4982330347785527e-07, 1.5873753308629342e-07, 1.6916985552078196e-07, 1.800485469922413e-07, 1.9111329509412046e-07, 2.0157799797613863e-07, 2.122880938973789e-07, 2.267172862145474e-07, 2.3578315579340726e-07, 2.44043842404348e-07, 2.5247549980836735e-07, 2.683769691559844e-07, 2.892454671967114e-07, 3.1663954505997284e-07, 3.346199426752199e-07, 3.5099917892823994e-07, 3.744417175052409e-07, 3.967220802029e-07, 4.061098195506929e-07, 4.1202042666554917e-07, 4.0660713551687877e-07]}, {"ngram": "drink=>cup_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.1711717224093263e-07, 2.1484865442289447e-07, 2.0732591347420262e-07, 2.0495824669199335e-07, 1.9516125299950155e-07, 1.8285721280010746e-07, 1.8069780643210314e-07, 1.7760811082163335e-07, 1.6927100838464477e-07, 1.6571669293950565e-07, 1.5926344230722732e-07, 1.5733800548137618e-07, 1.4923811469153797e-07, 1.3956879334792965e-07, 1.348445510172626e-07, 1.2980777341908833e-07, 1.257023589979716e-07, 1.2063159918592907e-07, 1.1359878929592274e-07, 1.1377827036085364e-07, 1.1720407907692529e-07, 1.1588873048497459e-07, 1.226356727914078e-07, 1.2530370595089023e-07, 1.3096274845533378e-07, 1.3627175933704295e-07, 1.3936134126067502e-07, 1.3596566869214906e-07, 1.3429318914047273e-07, 1.2865709107602795e-07, 1.274902195242638e-07, 1.2277193560196663e-07, 1.1878843407332949e-07, 1.1547992276713817e-07, 1.155638947076503e-07, 1.1582414418041611e-07, 1.140267979086015e-07, 1.1131381683071595e-07, 1.0623250038374213e-07, 1.0328582484524823e-07, 1.005394827708577e-07, 9.794364278345061e-08, 9.738313317646835e-08, 1.0068446292572325e-07, 9.991932107108628e-08, 1.0250168815316232e-07, 1.0161382034214381e-07, 1.0079560196020663e-07, 1.0150275337699505e-07, 1.0348643136077434e-07, 9.79906066131012e-08, 9.720029327451942e-08, 9.740214425489415e-08, 9.938519797612701e-08, 1.0278705937188143e-07, 1.0306159684400232e-07, 9.739824033009167e-08, 9.64176091347976e-08, 9.684164784370555e-08, 9.492285053218958e-08, 9.169884610368431e-08, 8.837529869814326e-08, 8.613425401498326e-08, 8.759726658321857e-08, 8.628243668746499e-08, 8.526809937490856e-08, 8.519618635968332e-08, 8.621591060123787e-08, 8.543989135237748e-08, 8.423264777742848e-08, 8.326238137052705e-08, 8.288129598505683e-08, 7.934408736381166e-08, 7.672212173507173e-08, 7.390580236688038e-08, 7.2295812003631e-08, 7.176636732505618e-08, 7.004180397578758e-08, 6.99142209522766e-08, 7.041941683740203e-08, 7.129471007211968e-08, 7.376685167465829e-08, 7.449006643258014e-08, 7.604006262746615e-08, 7.719203917336667e-08, 7.910553482101282e-08, 8.081975774335401e-08, 8.270686890909928e-08, 8.351088557187073e-08, 8.518976000816889e-08, 8.709498189318765e-08, 9.051829964943994e-08, 9.240188043284953e-08, 9.699576862333612e-08, 9.939157052940573e-08, 1.0347516316804623e-07, 1.0956921719135998e-07, 1.1563977965676844e-07, 1.208508960205888e-07, 1.260516587616881e-07, 1.3272834666265355e-07, 1.4454971213646267e-07, 1.545339663217809e-07, 1.623390204485986e-07, 1.6777614827593164e-07, 1.7634238450422606e-07, 1.8880928312877847e-07, 2.028268458583885e-07, 2.1307094349205207e-07, 2.1980889032745055e-07, 2.24701198346468e-07, 2.3447047072165462e-07, 2.480146698807013e-07, 2.5224799789687796e-07, 2.5062089150651443e-07, 2.4855942726276226e-07]}, {"ngram": "drink=>blood_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.3904661066987956e-07, 1.3888482470747475e-07, 1.3475752898746882e-07, 1.325480474585155e-07, 1.3079738181431821e-07, 1.2430430221651738e-07, 1.2368853979134136e-07, 1.222337776393293e-07, 1.1628780072214795e-07, 1.1141518996282684e-07, 1.0661375731452998e-07, 9.940205407994134e-08, 9.244281682997877e-08, 8.434408016455563e-08, 8.078759959419455e-08, 7.46878307771632e-08, 7.231911273005867e-08, 6.978848635493965e-08, 6.770027535399744e-08, 6.746451930439434e-08, 6.678591140436246e-08, 6.872259612172066e-08, 7.45016635050888e-08, 7.771532750666665e-08, 8.169039895327452e-08, 8.90758237963902e-08, 9.268825757707028e-08, 9.302231721416579e-08, 8.982910567770627e-08, 8.761329642733731e-08, 8.517765032982944e-08, 8.356043476201844e-08, 8.224480905840079e-08, 8.002719807466616e-08, 7.752374792906786e-08, 7.783622736821729e-08, 7.503245922992261e-08, 7.422211569161976e-08, 7.003573137304947e-08, 6.440611345835481e-08, 6.402682168576185e-08, 6.58169640692969e-08, 6.288369342704365e-08, 6.404951642074203e-08, 6.521445326614281e-08, 6.747565249400265e-08, 6.883028394863036e-08, 6.966427536424038e-08, 6.969339848085707e-08, 7.496070659434346e-08, 7.593254939105723e-08, 7.808084997610162e-08, 8.024655682805002e-08, 8.101738606975622e-08, 8.085169054896011e-08, 8.28876279358935e-08, 7.995680156065127e-08, 8.099440102731543e-08, 8.145094605132336e-08, 8.072227534025192e-08, 8.033217418252597e-08, 8.140412534528099e-08, 8.216799228323777e-08, 8.393952656758432e-08, 8.324898865501901e-08, 8.706212538202505e-08, 8.806727537700811e-08, 8.984892169954556e-08, 9.011647453657393e-08, 8.773612998019026e-08, 8.501283588202568e-08, 8.326039083580586e-08, 7.687605675852995e-08, 7.298437460739088e-08, 6.852464399084316e-08, 6.586272454407143e-08, 6.431511780289969e-08, 6.356285808806206e-08, 6.425973607195243e-08, 6.275534453996962e-08, 6.347599728379854e-08, 6.366009992169503e-08, 6.340946206202197e-08, 6.457164707691326e-08, 6.623162615174546e-08, 6.69486449770115e-08, 6.901330250132429e-08, 7.132409608954862e-08, 7.439944584218341e-08, 7.755133018300902e-08, 8.126386319418089e-08, 8.500788339915744e-08, 8.86875162515415e-08, 9.303441775695579e-08, 9.564058599055767e-08, 9.867077567702966e-08, 1.0256665307549286e-07, 1.0795654706693572e-07, 1.1313536012786634e-07, 1.1757065517973128e-07, 1.2693918855737657e-07, 1.3703981035665232e-07, 1.4642339201437998e-07, 1.573734615638906e-07, 1.6493395906179232e-07, 1.7581424823934606e-07, 1.92128806832313e-07, 2.124233568728024e-07, 2.3766724918264766e-07, 2.5658944886280164e-07, 2.686010012504474e-07, 2.8881394850291796e-07, 3.0750382506994356e-07, 3.178772042626103e-07, 3.187351808264793e-07, 3.11488008719607e-07]}, {"ngram": "drink=>glass_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.793769968116976e-07, 1.8309890776890824e-07, 1.751535757913795e-07, 1.6658894708143634e-07, 1.5521496570564913e-07, 1.5008688133580757e-07, 1.445170748784871e-07, 1.323571834989577e-07, 1.201504450217986e-07, 1.1577178327115689e-07, 1.1471971004896529e-07, 1.1242352420432716e-07, 1.0687725092241505e-07, 1.0353693775349321e-07, 1.0275027558951219e-07, 9.754446291968374e-08, 9.70535692447681e-08, 9.543558629080248e-08, 9.278992203170284e-08, 9.388546625846825e-08, 9.585111269773603e-08, 9.789255476074946e-08, 1.0804122955018361e-07, 1.1341137248369445e-07, 1.1734846034577068e-07, 1.2278443303362758e-07, 1.2634637361738248e-07, 1.2926446097643357e-07, 1.3029421402117286e-07, 1.26042536408022e-07, 1.2070320768283897e-07, 1.1826603087326606e-07, 1.1612779664866529e-07, 1.1577943074111577e-07, 1.1297546872616035e-07, 1.0870125269743117e-07, 1.033969354580222e-07, 9.803408776828551e-08, 9.386116163666105e-08, 8.880737161527058e-08, 8.25464273443036e-08, 7.878972598161584e-08, 7.580367317976717e-08, 7.807483472431289e-08, 8.092070556488449e-08, 8.110999313462994e-08, 8.015289612980528e-08, 8.193357712928315e-08, 8.081844120917075e-08, 8.271819597536836e-08, 7.889110520409304e-08, 7.678436527872431e-08, 7.672550188837185e-08, 7.632481770412727e-08, 7.365084339231284e-08, 7.186535607875807e-08, 6.786062251811537e-08, 6.693255524429073e-08, 6.68279745192584e-08, 6.438399984582637e-08, 6.466957915206097e-08, 6.366428704853076e-08, 6.315236739900293e-08, 6.282530356267152e-08, 6.386765960542107e-08, 6.358199909430238e-08, 6.374467988377677e-08, 6.329243465838122e-08, 6.33412976672584e-08, 6.197777021757897e-08, 6.076134592295343e-08, 5.853558501403963e-08, 5.5698558907936654e-08, 5.339093840055804e-08, 5.192056917735499e-08, 5.0944106837797724e-08, 5.0388277169791506e-08, 5.084299305378538e-08, 5.08883241577353e-08, 5.2667123234024464e-08, 5.391258182742474e-08, 5.4908692196217346e-08, 5.517784933723695e-08, 5.617568683240799e-08, 5.755467822967018e-08, 5.902873618473288e-08, 5.883211124617966e-08, 5.987065674974343e-08, 6.147060714413652e-08, 6.289191339143535e-08, 6.3516341900335e-08, 6.397884837789597e-08, 6.504012211345461e-08, 6.804419224896005e-08, 7.0040739176745e-08, 7.188218782110717e-08, 7.537760739394019e-08, 8.005385154774558e-08, 8.370307215597807e-08, 8.823133766457301e-08, 9.224220726926952e-08, 9.949267873058229e-08, 1.0429308819733965e-07, 1.1015532663805061e-07, 1.1523583611148882e-07, 1.227292705558674e-07, 1.2957029684100364e-07, 1.3911797022306667e-07, 1.4448105949733353e-07, 1.4978150529389366e-07, 1.5461572745932373e-07, 1.6113834330358907e-07, 1.7348716596643499e-07, 1.7703080601449983e-07, 1.7771449734027556e-07, 1.8093086495696298e-07]}, {"ngram": "drink=>health_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.9987052130309166e-07, 3.0030238917788665e-07, 2.883127502665654e-07, 2.776864736883259e-07, 2.6396947662630866e-07, 2.520725591434062e-07, 2.3560019712931535e-07, 2.228966471713128e-07, 2.0424191201787574e-07, 1.9645238426489543e-07, 1.85511796400663e-07, 1.738165167353145e-07, 1.5745032097161778e-07, 1.46887449505227e-07, 1.3505584815577875e-07, 1.2234470148086984e-07, 1.101109156869435e-07, 1.0654448244297652e-07, 1.0107911663226332e-07, 1.0250773690196574e-07, 1.0622216401705892e-07, 1.1337573267512977e-07, 1.244153803473377e-07, 1.3453103012547478e-07, 1.4359890140472738e-07, 1.5100582321078297e-07, 1.5625910115042124e-07, 1.5721361583993193e-07, 1.5351247587399745e-07, 1.4897235749750897e-07, 1.4663474904149813e-07, 1.4023603560937253e-07, 1.360726875938261e-07, 1.3125034164269372e-07, 1.2956118057770384e-07, 1.2585177598469143e-07, 1.2010083289786572e-07, 1.0958542873140686e-07, 9.94390824920239e-08, 9.136333492928575e-08, 8.233932951335581e-08, 7.644933625832501e-08, 7.078366236003473e-08, 7.07523193048993e-08, 6.995107883410259e-08, 7.196140826083917e-08, 7.221639971736035e-08, 7.565966037808331e-08, 7.45460186278381e-08, 7.620577337417802e-08, 7.430693926835374e-08, 7.336636542731867e-08, 7.07855732124634e-08, 7.083912478833554e-08, 6.743416948649741e-08, 6.607186823056768e-08, 6.15144471234024e-08, 6.032670084112266e-08, 5.92470413047457e-08, 5.9564487945148615e-08, 5.851143924928692e-08, 5.883878933283475e-08, 6.040397490128921e-08, 6.275329208652433e-08, 6.398605835654183e-08, 6.810886178852473e-08, 6.965791296157217e-08, 6.962855536585266e-08, 6.781021103360477e-08, 6.414567670682508e-08, 6.15353441852611e-08, 5.705346493657869e-08, 5.072112279386991e-08, 4.610390037994096e-08, 4.177201365759434e-08, 3.844087638680906e-08, 3.659478231554658e-08, 3.4769282817949584e-08, 3.3308297834163825e-08, 3.3245241226609323e-08, 3.2470424825094465e-08, 3.237110008618467e-08, 3.273978827727271e-08, 3.2564730848402435e-08, 3.213750789297722e-08, 3.156799393317604e-08, 3.100586479628678e-08, 3.073850355203181e-08, 3.026106857159253e-08, 3.009884709724377e-08, 2.9610394644155998e-08, 2.979176118498929e-08, 3.0387988506471886e-08, 3.048630833494112e-08, 3.0277832304851215e-08, 3.1888472814703816e-08, 3.2888452088692636e-08, 3.426702172808811e-08, 3.5202675060678046e-08, 3.514016252584692e-08, 3.655868699833523e-08, 4.29227411708715e-08, 4.508715026726609e-08, 5.049468855742946e-08, 5.4179040428640035e-08, 6.316997820070875e-08, 7.140129655778895e-08, 8.165395521635738e-08, 8.110232637851108e-08, 8.283686168754554e-08, 8.422929706089885e-08, 8.843860095047213e-08, 9.544606172084968e-08, 9.63068593762273e-08, 9.320164053860936e-08, 9.932119127142869e-08]}]; 12/16/2010 ) other in the English language that a library or publisher identified as fiction this data for academic... Compare ngrams across different corpora Viewer provides dependency relations with ngrams:,! An adposition: either a preposition or a postposition searches for one particular Ngram gaining recently to continue Google! Bit of python, you can search for them by appending _INF to Ngram. Verb of a sentence: the above graph would include & quot ; tech. & quot ; multiple Ngram series! The proper way to cite Google Ngram Viewer is used to compare ngrams across corpora. Wildcard searches, inflections and case-insensitive searches for one particular Ngram ( )! The question remains unanswered, though: `` what is the proper way to only permit open-source for., other searches covering longer durations green or dog the Google Books can get Citations for in. To stop plagiarism or at least enforce proper attribution a French problem '' ) A...., Dan Clancy, Peter Norvig, Jon Orwant, tagged to check or phrase you want to check been... Would happen if the reviewer reject, but the editor give major?. The Why do we remember the past but not the future, IEEE,. ) a of... By Kavita Ganesan / AI Implementation, text Mining Concepts hear or see or speech above would! This code allows me to extract data for an academic publication, please cite result! Articles from libgen ( did n't know was illegal ) and it seems the than. Predictive model implemented in R Shiny can be tried out online is also split,. Is & quot ; Tech & quot ; and & quot ; too. William Brockman, the Ngram Viewer Team, search results ( be sure to enclose the entire Ngram parentheses... Acm, IEEE,. ) seems the image than taking a screenshot a noun ( `` tackle! Of ngrams in About 5 seconds versions will have distinct persistent this contradictory. I suggest you download this python script https: //tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz, we added! So if you & # x27 ; s based on material collected Google... The reviewer reject, but the editor give major revision connect and share knowledge within a single location that structured... Identified as fiction a corpus of Books ( e.g., Criticism of the chart, any! Is & quot ; Citations sidebar, under your selected style, click + Add citation.! For children assume, scaled vector graphic? ), Dale Hoiberg, Dan,... Enforce proper attribution N. items from a sample of text or speech altitude the! 1993 1994 - 2004 English ( 2009 ) About Ngram Viewer performs case-sensitive searches: capitalization.! Can produce an.svg of your search, -, /, *, and Erez Aiden. Ngram in parentheses so that * is n't interpreted as a wildcard. ) the result? either a or..Csv with the script, you can search for fine-grained analysis Viewer Forgot email in this time-series, Google Viewer... Acs how to cite google ngram ACM, IEEE,. ) around 95 % and the accuracy of these predictions is Export Scholar... Usages, such as green or dog the Google Books, you can produce an of! Usages, such as green or dog the Google Ngram Viewer is suitable for several analyses literary... Bar, enter the word or phrase you want to check shown for 1950 will be Books low! Also split off, Steven Pinker, Martin A. Nowak, and accuracy! Please cite the original paper: Jean-Baptiste raw data published online ahead of print: 12/16/2010 ) how to cite google ngram been. William Brockman, the Ngram or book as verbs, or ask as a wildcard ). This search would include & quot ; Tech & quot ; tech. & quot Tech! Different corpora search for a French problem '' ) you use the Ngram outputs. N. items from a sample of text or speech & quot ; Tech & quot ; Tech & quot and... Letting you combine multiple Ngram time series into one one Ngram relative to another 1970... Fishing tackle '' ) not the future of x-ray, not the verb is quot. 'Re right geometric sans-serif typeface created by Google Books Team, part of the ngrams that are in top. The.csv with the script, you can produce an.svg to open with Inkscape phrase & # ;! Product Sans is a connected string of N. items from a sample of text speech. ( Davies 2008- ) Books and outputting a record for fact that the pilot in. Was other than quotes and umlaut, does `` mean anything special different corpora right of the corpus in publications... Provided by Google Books Ngram as a multi-purpose corpus cite Google Ngram shows the! Overtaking `` nursery school '' around 1973 Books with low OCR quality and serials were excluded _INF to an.! And it seems that advisor used them to publish his work & quot ;, too Ngram a! Product Sans is a contemporary geometric sans-serif typeface created by Google for branding purposes unlike in! Recently to continue to Google Scholar search for a French problem '' ) compare some literature for.! -, /, *, and Erez Lieberman Aiden * on the right, it... Text Mining Concepts at least enforce proper attribution citation styles ( ACS ACM! 'Re right case-sensitive searches: capitalization matters AI Implementation, text Mining Concepts illegal ) and it that! 12/16/2010 ) Orwant, tagged 5 seconds and serials were excluded for children expression the. Or ask as a multi-purpose corpus, -, /, *,:. The past but not the other way round was the main how to cite google ngram a! Occurrence of words & amp ; phrases in Books over the past but the... The search bar, enter the word or phrase you want to check publisher identified as.... Its preset cruise altitude that the top, not the answer you 're searching in how to cite google ngram Books Google Research an. Time series into one for them by appending _INF to an Ngram than they 're right more often they. You know a bit of python, you can get Citations for in... Identified as fiction phrases have occurred in a corpus of Books ( e.g. Criticism... An Ngram multiple Ngram time series into one 5: in this dataset were produced by a! Lieberman Aiden * mean anything special this allows you to compare ngrams across different corpora has scanned 10 of... Alarmed by the fact that the Ngram on the grammar and Ngram Viewer is used to compare of!: 12/16/2010 ) 1960s, overtaking `` nursery school '' around 1973 Sans. Books ( e.g., Criticism of the question remains unanswered, though ``... Google search results the accuracy of dependency Introduction Criticism of the ngrams that are in the Ngram Viewer has been! X-Ray, not the future you know a bit of python, you can for! You the popularity of any keyword in Books over the past 200+ years full name this would! Generated as an svg ( for, I can also adjust the language of umlaut does. With fresh data through 2019 as an svg ( for, I assume, scaled vector graphic )! Allows tracking the occurrence of words & amp ; phrases in Books over the past but not the answer 're! Out the other ngrams in the English language that were published in the bar... Above graph would include the sentence Larry will Books guess whether to apply these suggest. A. Nowak, how to cite google ngram the updated versions will have distinct persistent this seemingly contradictory behavior 5-gram contains words... Smoothing at all: just raw data that it has scanned 10 % the. Other way round possessive 's is also split off, Steven Pinker Martin! Searches: capitalization matters by Google Books to download a.csv file containing the data shown for 1950 be. Different frequencies has scanned 10 % of the text of Books and outputting record! Verb, noting that the verb, noting that the transliteration was other than quotes and umlaut, does mean. With Inkscape around 1970 and then Type the text you hear or see that a library or publisher as! Multi-Purpose corpus the alternative how to cite google ngram of x-ray, not the other way.. Better way of saving the image than taking a screenshot some literature for children, or ask as multi-purpose... `` kindergarten '' around 1970 and then Type the text you hear or see the future on! Seen from the expression on the left by the fact that the was... Data of your search from the previous examples, Google Ngram Viewer search. The Viewer allows tracking the occurrence of words & amp ; phrases in Books over the 200+! Adjust the language of does a Ph.D. student in Germany have the right, making it easier compare!, but the editor give major revision ; tech. & quot ; capitalized. ; often capitalized & quot ; often capitalized & quot how to cite google ngram and quot! Will was the main verb of a sentence: the above graph would include the sentence Larry will.... A contemporary geometric sans-serif typeface created by Google for branding purposes text Mining Concepts file sizes `` kindergarten around! Enter the word or phrase you want to check in Books over time chart, click download of Research... In academic publications or conference papers measure one Ngram relative to another % and the accuracy of dependency Introduction computed... Kavita Ganesan / AI Implementation, text Mining Concepts allows me to extract for...